Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A stochastic resource-sharing network for electric vehicle charging

Abstract

We consider a distribution grid used to charge electric vehicles subject to voltage stability and various other constraints. We model this as a class of resource-sharing networks known as bandwidth-sharing networks in the communication network literature. Such networks have proved themselves to be an \neffective flow-level model of data traffic in wired and wireless networks. We focus on resource sharing networks that are driven by a class of greedy control rules that can be implemented in a decentralized fashion. For a large number of such control rules, we can characterize the performance of the system, subject to voltage stability constraints, by a fluid approximation. This leads to a set of dynamic equations that take into account the stochastic behavior of cars. We show that the invariant point of these equations is unique and can be computed by solving a specific ACOPF problem, which admits an exact convex relaxation. For the class of weighted proportional fairness control, we show additional \nappealing properties under the linearized Distflow model, such as fairness, and a product form property of the stochastic model

Similar works

This paper was published in CWI's Institutional Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.