Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks

Abstract

Inspired by detailed modelling of biological neurons, spiking neural networks (SNNs) are investigated as biologically plausible and high-performance models of neural computation. The sparse and binary communication between spiking neurons potentially enables powerful and energy-efficient neural networks. The performance of SNNs, however, has remained lacking compared with artificial neural networks. Here we demonstrate how an activity-regularizing surrogate gradient combined with recurrent networks of tunable and adaptive spiking neurons yields the state of the art for SNNs on challenging benchmarks in the time domain, such as speech and gesture recognition. This also exceeds the performance of standard classical recurrent neural networks and approaches that of the best modern artificial neural networks. As these SNNs exhibit sparse spiking, we show that they are theoretically one to three orders of magnitude more computationally efficient compared to recurrent neural networks with similar performance. Together, this positions SNNs as an attractive solution for AI hardware implementations

Similar works

Full text

thumbnail-image

CWI's Institutional Repository

redirect
Last time updated on 19/12/2021

This paper was published in CWI's Institutional Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.