Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A quantum view on convex optimization

Abstract

In this dissertation we consider quantum algorithms for convex optimization. We start by considering a black-box setting of convex optimization. In this setting we show that quantum computers require exponentially fewer queries to a membership oracle for a convex set in order to implement a separation oracle for that set. We do so by proving that Jordan's quantum gradient algorithm can also be applied to find sub-gradients of convex Lipschitz functions, even though these functions might not even be differentiable. As a corollary we get a quadraticly faster algorithm for convex optimization using membership queries.As a second set of results we give sub-linear time quantum algorithms for semidefinite optimization by speeding up the iterations of the Arora-Kale algorithm. For the problem of finding approximate Nash equilibria for zero-sum games we then give specific algorithms that improve the error-dependence and only depend on the sparsity of the game, not it's size. These last results yield improved algorithms for linear programming as a corollary.We also show several lower bounds in these settings, matching the upper bounds in most or all parameters

Similar works

Full text

thumbnail-image

International Migration, Integration and Social Cohesion online publications

redirect
Last time updated on 08/03/2023

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.