Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Ultra Low-power Wireless Sensor Node Design for ECG Sensing Applications

Abstract

Ubiquitous computing, such as smart homes, smart cars, and smart grid, connects our world closely so that we can easily access to the world through such virtual infrastructural systems. The ultimate vision of this is Internet of Things (IoT) through which intelligent monitoring and management is feasible via networked sensors and actuators. In this system, devices transmit sensed information, and execute instructions distributed via sensor networks. A wireless sensor network (WSN) is such a network where many sensor nodes are interconnected such that a sensor node can transmit information via its adjacent sensor nodes when physical phenomenon is detected. Accordingly, the information can be delivered to the destination through this process. The concept of WSN is also applicable to biomedical applications, especially ECG sensing applications, in a form of a sensor network, so-called body sensor network (BSN), where affixed or implanted biosignal sensors gather bio-signals and transmit them to medical providers. The main challenge of BSN is energy constraint since implanted sensor nodes cannot be replaced easily, so they should prolong with a limited amount of battery energy or by energy harvesting. Thus, we will discuss several power saving techniques in this thesis.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137081/1/hesed_1.pd

Similar works

Full text

thumbnail-image

Deep Blue Documents at the University of Michigan

redirect
Last time updated on 02/08/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.