Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Gradient and passive circuit structure in a class of non-linear dynamics on a graph

Abstract

We consider a class of non-linear dynamics on a graph that contains and generalizes various models from network systems and control and study convergence to uniform agreement states using gradient methods. In particular, under the assumption of detailed balance, we provide a method to formulate the governing ODE system in gradient descent form of sum-separable energy functions, which thus represent a class of Lyapunov functions; this class coincides with Csiszár's information divergences. Our approach bases on a transformation of the original problem to a mass-preserving transport problem and it reflects a little-noticed general structure result for passive network synthesis obtained by B.D.O. Anderson and P.J. Moylan in 1975. The proposed gradient formulation extends known gradient results in dynamical systems obtained recently by M. Erbar and J. Maas in the context of porous medium equations. Furthermore, we exhibit a novel relationship between inhomogeneous Markov chains and passive non-linear circuits through gradient systems, and show that passivity of resistor elements is equivalent to strict convexity of sum-separable stored energy. Eventually, we discuss our results at the intersection of Markov chains and network systems under sinusoidal coupling

Similar works

Full text

thumbnail-image

DIAL UCLouvain

redirect
Last time updated on 23/09/2018

This paper was published in DIAL UCLouvain.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.