Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The Application of Nature-inspired Metaheuristic Methods for Optimising Renewable Energy Problems and the Design of Water Distribution Networks

Abstract

This work explores the technical challenges that emerge when applying bio-inspired optimisation methods to real-world engineering problems. A number of new heuristic algorithms were proposed and tested to deal with these challenges. The work is divided into three main dimensions: i) One of the most significant industrial optimisation problems is optimising renewable energy systems. Ocean wave energy is a promising technology for helping to meet future growth in global energy demand. However, the current technologies of wave energy converters (WECs) are not fully developed because of technical engineering and design challenges. This work proposes new hybrid heuristics consisting of cooperative coevolutionary frameworks and neuro-surrogate optimisation methods for optimising WECs problem in three domains, including position, control parameters, and geometric parameters. Our problem-specific algorithms perform better than existing approaches in terms of higher quality results and the speed of convergence. ii) The second part applies search methods to the optimization of energy output in wind farms. Wind energy has key advantages in terms of technological maturity, cost, and life-cycle greenhouse gas emissions. However, designing an accurate local wind speed and power prediction is challenging. We propose two models for wind speed and power forecasting for two wind farms located in Sweden and the Baltic Sea by a combination of recurrent neural networks and evolutionary search algorithms. The proposed models are superior to other applied machine learning methods. iii) Finally, we investigate the design of water distribution systems (WDS) as another challenging real-world optimisation problem. WDS optimisation is demanding because it has a high-dimensional discrete search space and complex constraints. A hybrid evolutionary algorithm is suggested for minimising the cost of various water distribution networks and for speeding up the convergence rate of search.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202

Similar works

This paper was published in Adelaide Research & Scholarship.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.