Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

An Analytical Approach for Memristive Nanoarchitectures

Abstract

As conventional memory technologies are challenged by their technological physical limits, emerging technologies driven by novel materials are becoming an attractive option for future memory architectures. Among these technologies, Resistive Memories (ReRAM) created new possibilities because of their nanofeatures and unique I-V characteristics. One particular problem that limits the maximum array size is interference from neighboring cells due to sneak-path currents. A possible device level solution to address this issue is to implement a memory array using complementary resistive switches (CRS). Although the storage mechanism for a CRS is fundamentally different from what has been reported for memristors (low and high resistances), a CRS is simply formed by two series bipolar memristors with opposing polarities. In this paper, our intention is to introduce modeling principles that have been previously verified through measurements and extend the simulation principles based on memristors to CRS devices and, hence, provide an analytical approach to the design of a CRS array. The presented approach creates the necessary design methodology platform that will assist designers in implementation of CRS devices in future systems.Omid Kavehei, Said Al-Sarawi, Kyoung-Rok Cho, Kamran Eshraghian and Derek Abbot

Similar works

This paper was published in Adelaide Research & Scholarship.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.