Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Robustness and Control of a Magnetically Levitated Transportation System

Abstract

Electromagnetic suspension of Magnetic Levitation Vehicles (Maglev) has been studied for many years as an alternative to wheel-on rail transportation systems. In this work, design and implementation of control systems for a Maglev laboratory experiment and a Maglev vehicle under development at Old Dominion University are described. Both plants are modeled and simulated with consideration of issues associated with system non-linearity, structural flexibility and electromagnetic force modeling. Discussion concerning different control strategies, namely centralized and decentralized approaches are compared and contrasted in this work. Different types of electromagnetic non-linearities are considered and described to establish a convenient method for modeling such a system. It is shown how a Finite Element structural model can be incorporated into the system to obtain transfer function notation. Influence of the dynamic interaction between the Maglev track and the Maglev vehicle is discussed and supported by both analytical results and theoretical examples. Finally, several control laws designed to obtain stable and robust levitation are explored in detail

Similar works

This paper was published in Old Dominion University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.