Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

An Optimal Deterministic Algorithm for Geodesic Farthest-Point Voronoi Diagrams in Simple Polygons

Abstract

Given a set S of m point sites in a simple polygon P of n vertices, we consider the problem of computing the geodesic farthest-point Voronoi diagram for S in P. It is known that the problem has an Ω(n + m log m) time lower bound. Previously, a randomized algorithm was proposed [Barba, SoCG 2019] that can solve the problem in O(n + m log m) expected time. The previous best deterministic algorithms solve the problem in O(n log log n + m log m) time [Oh, Barba, and Ahn, SoCG 2016] or in O(n + m log m + m log2 n) time [Oh and Ahn, SoCG 2017]. In this paper, we present a deterministic algorithm of O(n + m log m) time, which is optimal. This answers an open question posed by Mitchell in the Handbook of Computational Geometry two decades ago

Similar works

This paper was published in DigitalCommons@USU.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.