Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Investigation of the robustness of star graph networks

Abstract

The star interconnection network has been known as an attractive alternative to n-cube for interconnecting a large number of processors. It possesses many nice properties, such as vertex/edge symmetry, recursiveness, sublogarithmic degree and diameter, and maximal fault tolerance, which are all desirable when building an interconnection topology for a parallel and distributed system. Investigation of the robustness of the star network architecture is essential since the star network has the potential of use in critical applications. In this study, three different reliability measures are proposed to investigate the robustness of the star network. First, a constrained two-terminal reliability measure referred to as Distance Reliability (DR) between the source node u and the destination node I with the shortest distance, in an n-dimensional star network, Sn, is introduced to assess the robustness of the star network. A combinatorial analysis on DR especially for u having a single cycle is performed under different failure models (node, link, combined node/link failure). Lower bounds on the special case of the DR: antipode reliability, are derived, compared with n-cube, and shown to be more fault-tolerant than n-cube. The degradation of a container in a Sn having at least one operational optimal path between u and I is also examined to measure the system effectiveness in the presence of failures under different failure models. The values of MTTF to each transition state are calculated and compared with similar size containers in n-cube. Meanwhile, an upper bound under the probability fault model and an approximation under the fixed partitioning approach on the ( n-1)-star reliability are derived, and proved to be similarly accurate and close to the simulations results. Conservative comparisons between similar size star networks and n-cubes show that the star network is more robust than n-cube in terms of ( n-1)-network reliability

Similar works

Full text

thumbnail-image

University of Nevada, Las Vegas Repository

redirect
Last time updated on 09/07/2019

This paper was published in University of Nevada, Las Vegas Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.