Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Barnes Update Applied in the Gauss−Newton Method: An Improved Algorithm to Locate Bond Breaking Points

Abstract

A mechanochemical reaction is a reaction induced by mechanical energy. A general accepted model for this type of reactions consists in a first order perturbation on the associated potential energy surface (PES) of the unperturbed molecular system due to mechanical stress or pulling force. Within this theoretical framework, the so-called optimal barrier breakdown points or optimal bond breaking points (BBPs) are critical points of the unperturbed PES where the Hessian matrix has a zero eigenvector that coincides with the gradient vector. Optimal BBPs are 'catastrophe points' that are par- ticularly important because its associated gradient indicates how to optimally harness tensile forces to induce reactions by transforming a chemical reaction into a barrierless process. Building on a previous method based on a nonlinear least squares minimiza- tion to locate BBPs (Bofill et al., J. Chem. Phys. 2017, 147, 152710-10), we propose a new algorithm to locate BBPs of any molecular system based on the Gauss-Newton method combined with the Barnes update for the nonsymmetric Jacobian matrix, which is shown to be more appropriate than the Broyden update. The efficiency of the new method is demonstrated for a multidimensional model PES and two medium size molec- ular systems of interest in enzymatic catalysis and mechanochemistry

Similar works

Full text

thumbnail-image

Diposit Digital de la Universitat de Barcelona

redirect
Last time updated on 12/05/2022

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.