Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides

Abstract

Catalytic-materials design requires predictive modeling of the interaction between catalyst and reactants. This is challenging due to the complexity and diversity of structure-property relationships across the chemical space. Here, we report a strategy for a rational design of catalytic materials using the artificial intelligence approach (AI) subgroup discovery. We identify catalyst genes (features) that correlate with mechanisms that trigger, facilitate, or hinder the activation of carbon dioxide (CO2) towards a chemical conversion. The AI model is trained on first-principles data for a broad family of oxides. We demonstrate that surfaces of experimentally identified good catalysts consistently exhibit combinations of genes resulting in a strong elongation of a C-O bond. The same combinations of genes also minimize the OCO-angle, the previously proposed indicator of activation, albeit under the constraint that the Sabatier principle is satisfied. Based on these findings, we propose a set of new promising catalyst materials for CO2 conversion

Similar works

Full text

thumbnail-image

Diposit Digital de la Universitat de Barcelona

redirect
Last time updated on 15/08/2022

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.