Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Design and Optimization of Scheduling and Non-Orthogonal Multiple Access Algorithms with Imperfect Channel State Information

Abstract

Non-orthogonal multiple access (NOMA) is a promising candidate technology for 5G cellular systems. In this paper, design and optimization of scheduling and NOMA algorithms is investigated. The impact of power allocation for NOMA systems with round-robin scheduling is analyzed. A statistic model is developed for network performance analysis of joint scheduling of spectrum resource and power for NOMA algorithms. Proportional fairness scheduling for NOMA is proposed with a two-step approach, with objective of achieving high throughput and user fairness with low computational complexity. In the first step, an optimal power allocation strategy is developed with an objective of maximizing weighted sum rate. In the second step, three fast and scalable scheduling and user pairing algorithms with QoS guarantee are proposed, in which only a few user pairs are checked for NOMA multiplex. The algorithms are extended to the cases with imperfect channel state estimation and more than two users being multiplexed over one resource block. Numerical results show that the proposed algorithms are faster and more scalable than the existing algorithms, and maintain a higher throughput gain than orthogonal multiple access.</p

Similar works

Full text

thumbnail-image

University of Dundee Online Publications

redirect
Last time updated on 20/10/2019

This paper was published in University of Dundee Online Publications.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.