Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Determining the dynamics of coarse bedload transport using passive indirect monitoring: time-dependent variability at event to inter-annual scales

Abstract

The dynamics of coarse bedload transport in rivers is governed by multiple hierarchical factors including catchment-scale controls on sediment production, annually variable hydroclimatic driving of segment-scale sediment supply, and reach-scale factors related to the interaction of hydraulic forces with channel morphology. Exploring hydroclimatic drivers can beneficially utilise passive sensors to record coarse bedload transport over extended time periods and in previously unattainable resolution. For the River Avon (Devon, UK), five-minute coarse bedload frequency data collected using seismic impact plates inherently records the instantaneous variability of bedload transport intensity, patterns of event-scale hysteresis and selective path transport, and the influence of inter-event supply variations. Converting a four-year record of impacts into loads via a probabilistic, data-driven model illustrates the combined influence of hydroclimate and sedimentology on bedload at the inter-annual scale. Despite highly variable water years, the results indicate that ‘bar-building flows’ consistently achieve the peak efficiency for coarse bedload transport whereas bankfull flows are relatively ineffective. Further, annual sediment rating curves combine both supply and transport limiting phases. Sediment transport forecasting is thus sensitive to both flow year type and antecedent controls on sediment supply, with implications for advancing sustainable solutions in river management

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 03/06/2019

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.