Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Complex Dynamics of a Discrete-Time Predator-Prey System with Ivlev Functional Response

Abstract

The dynamics of a discrete-time predator-prey system with Ivlev functional response is investigated in this paper. The conditions of existence for flip bifurcation and Hopf bifurcation in the interior of R+2 are derived by using the center manifold theorem and bifurcation theory. Numerical simulations are presented not only to substantiate our theoretical results but also to illustrate the complex dynamical behaviors of the system such as attracting invariant circles, periodic-doubling bifurcation leading to chaos, and periodic-halving phenomena. In addition, the maximum Lyapunov exponents are numerically calculated to confirm the dynamical complexity of the system. Finally, we compare the system to discrete systems with Holling-type functional response with respect to dynamical behaviors

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 08/04/2018

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.