Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Detection, numerical simulation and approximate inversion of optoacoustic signals generated in multi-layered PVA hydrogel based tissue phantoms

Abstract

Optoacoustic (OA) measurements can not only be used for imaging purposes but as a more general tool to “sense” physical characteristics of biological tissue, such as geometric features and intrinsic optical properties. In order to pave the way for a systematic model-guided analysis of complex objects we devised numerical simulations in accordance with the experimental measurements. We validate our computational approach with experimental results observed for layered polyvinyl alcohol hydrogel samples, using melanin as the absorbing agent. Experimentally, we characterize the acoustic signal observed by a piezoelectric detector in the acoustic far-field in backward mode and we discuss the implication of acoustic diffraction on our measurements. We further attempt an inversion of an OA signal in the far-field approximation

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 14/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.