Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Fermionic Glauber operators and quark reggeization

Abstract

Abstract We derive, in the framework of soft-collinear effective field theory (SCET), a Lagrangian describing the t-channel exchange of Glauber quarks in the Regge limit. The Glauber quarks are not dynamical, but are incorporated through non-local fermionic potential operators. These operators are power suppressed in |t|/s relative to those describing Glauber gluon exchange, but give the first non-vanishing contributions in the Regge limit to processes such as qq¯→gg qqgg q\overline{q}\to gg and qq¯→γγ qqγγ q\overline{q}\to \gamma \gamma . They therefore represent an interesting subset of power corrections to study. The structure of the operators, which describe certain soft and collinear emissions to all orders through Wilson lines, is derived from the symmetries of the effective theory combined with constraints from power and mass dimension counting, as well as through explicit matching calculations. Lightcone singularities in the fermionic potentials are regulated using a rapidity regulator, whose corresponding renormalization group evolution gives rise to the Reggeization of the quark at the amplitude level and the BFKL equation at the cross section level. We verify this at one-loop, deriving the Regge trajectory of the quark in the 3 color channel, as well as the leading logarithmic BFKL equation. Results in the 6¯ 6 \overline{6} and 15 color channels are obtained by the simultaneous exchange of a Glauber quark and a Glauber gluon. SCET with quark and gluon Glauber operators therefore provides a framework to systematically study the structure of QCD amplitudes in the Regge limit, and derive constraints on higher order amplitudes

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 04/06/2019

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.