Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A Review and Comparison of the State-of-the-Art Techniques for Atrial Fibrillation Detection and Skin Hydration

Abstract

Atrial fibrillation (AF) is one of the most common types of cardiac arrhythmia, with a prevalence of 1–2% in the community, increasing the risk of stroke and myocardial infarction. Early detection of AF, typically causing an irregular and abnormally fast heart rate, can help reduce the risk of strokes that are more common among older people. Intelligent models capable of automatic detection of AF in its earliest possible stages can improve the early diagnosis and treatment. Luckily, this can be made possible with the information about the heart's rhythm and electrical activity provided through electrocardiogram (ECG) and the decision-making machine learning-based autonomous models. In addition, AF has a direct impact on the skin hydration level and, hence, can be used as a measure for detection. In this paper, we present an independent review along with a comparative analysis of the state-of-the-art techniques proposed for AF detection using ECG and skin hydration levels. This paper also highlights the effects of AF on skin hydration level that is missing in most of the previous studies

Similar works

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.