Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Asynchronous H∞ Estimation for Two-Dimensional Nonhomogeneous Markovian Jump Systems with Randomly Occurring Nonlocal Sensor Nonlinearities

Abstract

This paper is devoted to the problem of asynchronous H∞ estimation for a class of two-dimensional (2D) nonhomogeneous Markovian jump systems with nonlocal sensor nonlinearity, where the nonlocal measurement nonlinearity is governed by a stochastic variable satisfying the Bernoulli distribution. The asynchronous estimation means that the switching of candidate filters may have a lag to the switching of system modes, and the varying character of transition probabilities is considered to reside in a convex polytope. The jumping process of the error system is modeled as a two-component Markov chain with extended varying transition probabilities. A stochastic parameter-dependent approach is provided for the design of H∞ filter such that, for randomly occurring nonlocal sensor nonlinearity, the corresponding error system is mean-square asymptotically stable and has a prescribed H∞ performance index. Finally, a numerical example is used to illustrate the effectiveness of the developed estimation method

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.