Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Adaptive Sliding Mode Control of Mobile Manipulators with Markovian Switching Joints

Abstract

The hybrid joints of manipulators can be switched to either active (actuated) or passive (underactuated) mode as needed. Consider the property of hybrid joints, the system switches stochastically between active and passive systems, and the dynamics of the jump system cannot stay on each trajectory errors region of subsystems forever; therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this paper, we consider stochastic stability and sliding mode control for mobile manipulators using stochastic jumps switching joints. Adaptive parameter techniques are adopted to cope with the effect of Markovian switching and nonlinear dynamics uncertainty and follow the desired trajectory for wheeled mobile manipulators. The resulting closed-loop system is bounded in probability and the effect due to the external disturbance on the tracking errors can be attenuated to any preassigned level. It has been shown that the adaptive control problem for the Markovian jump nonlinear systems is solvable if a set of coupled linear matrix inequalities (LMIs) have solutions. Finally, a numerical example is given to show the potential of the proposed techniques

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 17/12/2014

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.