Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Temperature sensitivity of the pyloric neuromuscular system and its modulation by dopamine.

Abstract

We report here the effects of temperature on the p1 neuromuscular system of the stomatogastric system of the lobster (Panulirus interruptus). Muscle force generation, in response to both the spontaneously rhythmic in vitro pyloric network neural activity and direct, controlled motor nerve stimulation, dramatically decreased as temperature increased, sufficiently that stomach movements would very unlikely be maintained at warm temperatures. However, animals fed in warm tanks showed statistically identical food digestion to those in cold tanks. Applying dopamine, a circulating hormone in crustacea, increased muscle force production at all temperatures and abolished neuromuscular system temperature dependence. Modulation may thus exist not only to increase the diversity of produced behaviors, but also to maintain individual behaviors when environmental conditions (such as temperature) vary

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.