Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Adaptive Sliding Mode Control Based on Uncertainty and Disturbance Estimator

Abstract

This paper presents an original adaptive sliding mode control strategy for a class of nonlinear systems on the basis of uncertainty and disturbance estimator. The nonlinear systems can be with parametric uncertainties as well as unmatched uncertainties and external disturbances. The novel adaptive sliding mode control has several advantages over traditional sliding mode control method. Firstly, discontinuous sign function does not exist in the proposed adaptive sliding mode controller, and it is not replaced by saturation function or similar approximation functions as well. Therefore, chattering is avoided in essence, and the chattering avoidance is not at the cost of reducing the robustness of the closed-loop systems. Secondly, the uncertainties do not need to satisfy matching condition and the bounds of uncertainties are not required to be unknown. Thirdly, it is proved that the closed-loop systems have robustness to parameter uncertainties as well as unmatched model uncertainties and external disturbances. The robust stability is analyzed from a second-order linear time invariant system to a nonlinear system gradually. Simulation on a pendulum system with motor dynamics verifies the effectiveness of the proposed method

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.