Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Kosmotropes and chaotropes: modelling preferential exclusion, binding and aggregate stability

Abstract

Kosmotropic cosolvents added to an aqueous solution promote the aggregation of hydrophobic solute particles, while chaotropic cosolvents act to destabilise such aggregates. We discuss the mechanism for these phenomena within an adapted version of the two-state Muller–Lee–Graziano model for water, which provides a complete description of the ternary water/cosolvent/solute system for small solute particles. This model contains the dominant effect of a kosmotropic substance, which is to enhance the formation of water structure. The consequent preferential exclusion both of cosolvent molecules from the solvation shell of hydrophobic particles and of these particles from the solution leads to a stabilisation of aggregates. By contrast, chaotropic substances disrupt the formation of water structure, are themselves preferentially excluded from the solution, and thereby contribute to solvation of hydrophobic particles. We use Monte Carlo simulations to demonstrate at the molecular level the preferential exclusion or binding of cosolvent molecules in the solvation shell of hydrophobic particles, and the consequent enhancement or suppression of aggregate formation. We illustrate the influence of structure-changing cosolvents on effective hydrophobic interactions by modelling qualitatively the kosmotropic effect of sodium chloride and the chaotropic effect of urea

    Similar works

    This paper was published in RERO DOC Digital Library.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.