Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Gaussian message passing for overloaded massive MIMO-NOMA

Abstract

This paper considers a low-complexity Gaussian message passing (GMP) Multi-User Detection (MUD) scheme for a coded massive multiple-input multiple-output (MIMO) system with non-orthogonal multiple access (massive MIMO-NOMA), in which a base station with Ns antennas serves Nu sources simultaneously in the same frequency. Both Nu and Ns are large numbers, and we consider the overloaded cases with Nu>Ns. The GMP for MIMO-NOMA is a message passing algorithm operating on a fully-connected loopy factor graph, which is well understood to fail to converge due to the correlation problem. The GMP is attractive as its complexity order is only linearly dependent on the number of users, compared to the cubic complexity order of linear minimum mean square error (LMMSE) MUD. In this paper, we utilize the large-scale property of the system to simplify the convergence analysis of the GMP under the overloaded condition. We prove that the variances of the GMP definitely converge to the mean square error (MSE) of the LMMSE multi-user detection. Second, the means of the traditional GMP will fail to converge when Nu/Ns (2-1-25.83. Therefore, we propose and derive a new convergent GMP called scale-and-add GMP (SA-GMP), which always converges to the LMMSE multi-user detection performance for any Nu/Ns>1, and show that it has a faster convergence speed than the traditional GMP with the same complexity. Finally, the numerical results are provided to verify the validity and accuracy of the theoretical results presented.Accepted versio

Similar works

Full text

thumbnail-image

DR-NTU (Digital Repository of NTU)

redirect
Last time updated on 02/08/2023

This paper was published in DR-NTU (Digital Repository of NTU).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.