Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Toward secure blockchain-enabled Internet of Vehicles : optimizing consensus management using reputation and contract theory

Abstract

In the Internet of Vehicles (IoV), data sharing among vehicles is critical for improving driving safety and enhancing vehicular services. To ensure security and traceability of data sharing, existing studies utilize efficient delegated proof-of-stake consensus scheme as hard security solutions to establish blockchain-enabled IoV (BIoV). However, as the miners are selected from miner candidates by stake-based voting, defending against voting collusion between the candidates and compromised high-stake vehicles becomes challenging. To address the challenge, in this paper, we propose a two-stage soft security enhancement solution: 1) miner selection and 2) block verification. In the first stage, we design a reputation-based voting scheme to ensure secure miner selection. This scheme evaluates candidates' reputation using both past interactions and recommended opinions from other vehicles. The candidates with high reputation are selected to be active miners and standby miners. In the second stage, to prevent internal collusion among active miners, a newly generated block is further verified and audited by standby miners. To incentivize the participation of the standby miners in block verification, we adopt the contract theory to model the interactions between active miners and standby miners, where block verification security and delay are taken into consideration. Numerical results based on a real-world dataset confirm the security and efficiency of our schemes for data sharing in BIoV.Defence Science and Technology Agency (DSTA)Accepted versionThe authors acknowledge the research scholarship given by Nanyang Technological University and the research grant of the project “Modelling of Fibre-Reinforced Polymer (FRP) Strengthened Reinforced Concrete Walls subject to Blast and Fragment Loadings” from the Defence Science and Technology Agency (DSTA), Singapore under the Project Agreement (PA) NO: DSTOOOEP016000821. The authors are grateful for their support in this research

Similar works

Full text

thumbnail-image

DR-NTU (Digital Repository of NTU)

redirect
Last time updated on 02/08/2023

This paper was published in DR-NTU (Digital Repository of NTU).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.