Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Mark-aided distributed filtering by using neural network for DDoS defense

Abstract

Currently Distributed Denial of Service (DDoS) attacks have been identified as one of the most serious problems on the Internet. The aim of DDoS attacks is to prevent legitimate users from accessing desired resources, such as network bandwidth. Hence the immediate task of DDoS defense is to provide as much resources as possible to legitimate users when there is an attack. Unfortunately most current defense approaches can not efficiently detect and filter out attack traffic. Our approach is to find the network anomalies by using neural network, deploy the system at distributed routers, identify the attack packets, and then filter them. The marks in the IP header that are generated by a group of IP traceback schemes, Deterministic Packet Marking (DPM)/Flexible Deterministic Packet Marking (FDPM), assist this process of identifying attack packets. The experimental results show that this approach can be used to defend against both intensive and subtle DDoS attacks, and can catch DDoS attacks&rsquo; characteristic of starting from multiple sources to a single victim. According to results, we find the marks in IP headers can enhance the sensitivity and accuracy of detection, thus improve the legitimate traffic throughput and reduce attack traffic throughput. Therefore, it can perform well in filtering DDoS attack traffic precisely and effectively.<br /

Similar works

Full text

thumbnail-image

Deakin Research Online

redirect
Last time updated on 22/08/2013

This paper was published in Deakin Research Online.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.