Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Uniform Partition in Population Protocol Model Under Weak Fairness

Abstract

We focus on a uniform partition problem in a population protocol model. The uniform partition problem aims to divide a population into k groups of the same size, where k is a given positive integer. In the case of k=2 (called uniform bipartition), a previous work clarified space complexity under various assumptions: 1) an initialized base station (BS) or no BS, 2) weak or global fairness, 3) designated or arbitrary initial states of agents, and 4) symmetric or asymmetric protocols, except for the setting that agents execute a protocol from arbitrary initial states under weak fairness in the model with an initialized base station. In this paper, we clarify the space complexity for this remaining setting. In this setting, we prove that P states are necessary and sufficient to realize asymmetric protocols, and that P+1 states are necessary and sufficient to realize symmetric protocols, where P is the known upper bound of the number of agents. From these results and the previous work, we have clarified the solvability of the uniform bipartition for each combination of assumptions. Additionally, we newly consider an assumption on a model of a non-initialized BS and clarify solvability and space complexity in the assumption. Moreover, the results in this paper can be applied to the case that k is an arbitrary integer (called uniform k-partition)

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.