Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Improved Explicit Data Structures in the Bit-Probe Model Using Error-Correcting Codes

Abstract

We consider the bit-probe complexity of the set membership problem: represent an n-element subset S of an m-element universe as a succinct bit vector so that membership queries of the form "Is x ? S" can be answered using at most t probes into the bit vector. Let s(m,n,t) (resp. s_N(m,n,t)) denote the minimum number of bits of storage needed when the probes are adaptive (resp. non-adaptive). Lewenstein, Munro, Nicholson, and Raman (ESA 2014) obtain fully-explicit schemes that show that s(m,n,t) = ?((2^t-1)m^{1/(t - min{2?log n?, n-3/2})}) for n ? 2,t ? ?log n?+1 . In this work, we improve this bound when the probes are allowed to be superlinear in n, i.e., when t ? ?(nlog n), n ? 2, we design fully-explicit schemes that show that s(m,n,t) = ?((2^t-1)m^{1/(t-{n-1}/{2^{t/(2(n-1))}})}), asymptotically (in the exponent of m) close to the non-explicit upper bound on s(m,n,t) derived by Radhakrishan, Shah, and Shannigrahi (ESA 2010), for constant n. In the non-adaptive setting, it was shown by Garg and Radhakrishnan (STACS 2017) that for a large constant n?, for n ? n?, s_N(m,n,3) ? ?{mn}. We improve this result by showing that the same lower bound holds even for storing sets of size 2, i.e., s_N(m,2,3) ? ?(?m)

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.