Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs

Abstract

For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S ? V(G) such that G? S does not contain H as an induced subgraph. Motivated by previous work about hitting (topological) minors and subgraphs on bounded treewidth graphs, we are interested in determining, for a fixed graph H, the smallest function f_H(t) such that H-IS-Deletion can be solved in time f_H(t) ? n^{?(1)} assuming the Exponential Time Hypothesis (ETH), where t and n denote the treewidth and the number of vertices of the input graph, respectively. We show that f_H(t) = 2^{?(t^{h-2})} for every graph H on h ? 3 vertices, and that f_H(t) = 2^{?(t)} if H is a clique or an independent set. We present a number of lower bounds by generalizing a reduction of Cygan et al. [MFCS 2014] for the subgraph version. In particular, we show that when H deviates slightly from a clique, the function f_H(t) suffers a sharp jump: if H is obtained from a clique of size h by removing one edge, then f_H(t) = 2^{?(t^{h-2})}. We also show that f_H(t) = 2^{?(t^{h})} when H = K_{h,h}, and this reduction answers an open question of Mi. Pilipczuk [MFCS 2011] about the function f_{C?}(t) for the subgraph version. Motivated by Cygan et al. [MFCS 2014], we also consider the colorful variant of the problem, where each vertex of G is colored with some color from V(H) and we require to hit only induced copies of H with matching colors. In this case, we determine, under the ETH, the function f_H(t) for every connected graph H on h vertices: if h ? 2 the problem can be solved in polynomial time; if h ? 3, f_H(t) = 2^{?(t)} if H is a clique, and f_H(t) = 2^{?(t^{h-2})} otherwise

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.