Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Derivation of Constraints from Machine Learning Models and Applications to Security and Privacy

Abstract

This paper shows how we can combine the power of machine learning with the flexibility of constraints. More specifically, we show how machine learning models can be represented by first-order logic theories, and how to derive these theories. The advantage of this representation is that it can be augmented with additional formulae, representing constraints of some kind on the data domain. For instance, new knowledge, or potential attackers, or fairness desiderata. We consider various kinds of learning algorithms (neural networks, k-nearest-neighbours, decision trees, support vector machines) and for each of them we show how to infer the FOL formulae. Then we focus on one particular application domain, namely the field of security and privacy. The idea is to represent the potentialities and goals of the attacker as a set of constraints, then use a constraint solver (more precisely, a solver modulo theories) to verify the satisfiability. If a solution exists, then it means that an attack is possible, otherwise, the system is safe. We show various examples from different areas of security and privacy; specifically, we consider a side-channel attack on a password checker, a malware attack on smart health systems, and a model-inversion attack on a neural network

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.