Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A Twitter Corpus and Lexicon for Abusive Speech Detection in Serbian

Abstract

Abusive speech in social media, including profanities, derogatory and hate speech, has reached the level of a pandemic. A system that would be able to detect such texts could help in making the Internet and social media a better and more respectful virtual space. Research and commercial application in this area were so far focused mainly on the English language. This paper presents the work on building AbCoSER, the first corpus of abusive speech in Serbian. The corpus consists of 6,436 manually annotated tweets, out of which 1,416 were labelled as tweets using some kind of abusive speech. Those 1,416 tweets were further sub-classified, for instance to those using vulgar, hate speech, derogatory language, etc. In this paper, we explain the process of data acquisition, annotation, and corpus construction. We also discuss the results of an initial analysis of the annotation quality. Finally, we present an abusive speech lexicon structure and its enrichment with abusive triggers extracted from the AbCoSER dataset

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.