Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

CNF Satisfiability in a Subspace and Related Problems

Abstract

We introduce the problem of finding a satisfying assignment to a CNF formula that must further belong to a prescribed input subspace. Equivalent formulations of the problem include finding a point outside a union of subspaces (the Union-of-Subspace Avoidance (USA) problem), and finding a common zero of a system of polynomials over ?? each of which is a product of affine forms. We focus on the case of k-CNF formulas (the k-Sub-Sat problem). Clearly, k-Sub-Sat is no easier than k-SAT, and might be harder. Indeed, via simple reductions we show that 2-Sub-Sat is NP-hard, and W[1]-hard when parameterized by the co-dimension of the subspace. We also prove that the optimization version Max-2-Sub-Sat is NP-hard to approximate better than the trivial 3/4 ratio even on satisfiable instances. On the algorithmic front, we investigate fast exponential algorithms which give non-trivial savings over brute-force algorithms. We give a simple branching algorithm with running time (1.5)^r for 2-Sub-Sat, where r is the subspace dimension, as well as an O^*(1.4312)? time algorithm where n is the number of variables. Turning to k-Sub-Sat for k ? 3, while known algorithms for solving a system of degree k polynomial equations already imply a solution with running time ? 2^{r(1-1/2k)}, we explore a more combinatorial approach. Based on an analysis of critical variables (a key notion underlying the randomized k-SAT algorithm of Paturi, Pudlak, and Zane), we give an algorithm with running time ? {n choose {?t}} 2^{n-n/k} where n is the number of variables and t is the co-dimension of the subspace. This improves upon the running time of the polynomial equations approach for small co-dimension. Our combinatorial approach also achieves polynomial space in contrast to the algebraic approach that uses exponential space. We also give a PPZ-style algorithm for k-Sub-Sat with running time ? 2^{n-n/2k}. This algorithm is in fact oblivious to the structure of the subspace, and extends when the subspace-membership constraint is replaced by any constraint for which partial satisfying assignments can be efficiently completed to a full satisfying assignment. Finally, for systems of O(n) polynomial equations in n variables over ??, we give a fast exponential algorithm when each polynomial has bounded degree irreducible factors (but can otherwise have large degree) using a degree reduction trick

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.