Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The Weakest Failure Detector for Genuine Atomic Multicast

Abstract

Atomic broadcast is a group communication primitive to order messages across a set of distributed processes. Atomic multicast is its natural generalization where each message m is addressed to dst(m), a subset of the processes called its destination group. A solution to atomic multicast is genuine when a process takes steps only if a message is addressed to it. Genuine solutions are the ones used in practice because they have better performance. Let ? be all the destination groups and ? be the cyclic families in it, that is the subsets of ? whose intersection graph is hamiltonian. This paper establishes that the weakest failure detector to solve genuine atomic multicast is ? = (?_{g,h ? ?} ?_{g ? h}) ? (?_{g ? ?} ?_g) ? ?, where ?_P and ?_P are the quorum and leader failure detectors restricted to the processes in P, and ? is a new failure detector that informs the processes in a cyclic family f ? ? when f is faulty. We also study two classical variations of atomic multicast. The first variation requires that message delivery follows the real-time order. In this case, ? must be strengthened with 1^{g ? h}, the indicator failure detector that informs each process in g ? h when g ? h is faulty. The second variation requires a message to be delivered when the destination group runs in isolation. We prove that its weakest failure detector is at least ? ? (?_{g, h ? ?} ?_{g ? h}). This value is attained when ? = ?

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.