Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Rewindable Quantum Computation and Its Equivalence to Cloning and Adaptive Postselection

Abstract

We define rewinding operators that invert quantum measurements. Then, we define complexity classes RwBQP, CBQP, and AdPostBQP as sets of decision problems solvable by polynomial-size quantum circuits with a polynomial number of rewinding operators, cloning operators, and adaptive postselections, respectively. Our main result is that BPP^PP ? RwBQP = CBQP = AdPostBQP ? PSPACE. As a byproduct of this result, we show that any problem in PostBQP can be solved with only postselections of outputs whose probabilities are polynomially close to one. Under the strongly believed assumption that BQP ? SZK, or the shortest independent vectors problem cannot be efficiently solved with quantum computers, we also show that a single rewinding operator is sufficient to achieve tasks that are intractable for quantum computation. In addition, we consider rewindable Clifford and instantaneous quantum polynomial time circuits

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.