Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

5-Approximation for ?-Treewidth Essentially as Fast as ?-Deletion Parameterized by Solution Size

Abstract

The notion of ?-treewidth, where ? is a hereditary graph class, was recently introduced as a generalization of the treewidth of an undirected graph. Roughly speaking, a graph of ?-treewidth at most k can be decomposed into (arbitrarily large) ?-subgraphs which interact only through vertex sets of size ?(k) which can be organized in a tree-like fashion. ?-treewidth can be used as a hybrid parameterization to develop fixed-parameter tractable algorithms for ?-deletion problems, which ask to find a minimum vertex set whose removal from a given graph G turns it into a member of ?. The bottleneck in the current parameterized algorithms lies in the computation of suitable tree ?-decompositions. We present FPT-approximation algorithms to compute tree ?-decompositions for hereditary and union-closed graph classes ?. Given a graph of ?-treewidth k, we can compute a 5-approximate tree ?-decomposition in time f(?(k)) ? n^?(1) whenever ?-deletion parameterized by solution size can be solved in time f(k) ? n^?(1) for some function f(k) ? 2^k. The current-best algorithms either achieve an approximation factor of k^?(1) or construct optimal decompositions while suffering from non-uniformity with unknown parameter dependence. Using these decompositions, we obtain algorithms solving Odd Cycle Transversal in time 2^?(k) ? n^?(1) parameterized by bipartite-treewidth and Vertex Planarization in time 2^?(k log k) ? n^?(1) parameterized by planar-treewidth, showing that these can be as fast as the solution-size parameterizations and giving the first ETH-tight algorithms for parameterizations by hybrid width measures

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.