Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

An Approximation Algorithm for #k-SAT

Abstract

We present a simple randomized algorithm that approximates the number of satisfying assignments of Boolean formulas in conjunctive normal form. To the best of our knowledge this is the first algorithm which approximates #k-SAT for any k>=3 within a running time that is not only non-trivial, but also significantly better than that of the currently fastest exact algorithms for the problem. More precisely, our algorithm is a randomized approximation scheme whose running time depends polynomially on the error tolerance and is mildly exponential in the number n of variables of the input formula. For example, even stipulating sub-exponentially small error tolerance, the number of solutions to 3-CNF input formulas can be approximated in time O(1.5366^n). For 4-CNF input the bound increases to O(1.6155^n). We further show how to obtain upper and lower bounds on the number of solutions to a CNF formula in a controllable way. Relaxing the requirements on the quality of the approximation, on k-CNF input we obtain significantly reduced running times in comparison to the above bounds

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.