Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

Abstract

Tavenas has recently proved that any n^{O(1)}-variate and degree n polynomial in VP can be computed by a depth-4 SigmaPi^[O(sqrt{n})]SigmaPi^{[sqrt{n}]} circuit of size 2^{O(n^{1/2}.log(n))} [Tavenas, 2013]. So, to prove that VP is not equal to VNP it is sufficient to show that an explicit polynomial in VNP of degree n requires 2^{omega(n^{1/2}.log(n))} size depth-4 circuits. Soon after Tavenas\u27 result, for two different explicit polynomials, depth-4 circuit size lower bounds of 2^{Omega(n^{1/2}.log(n))} have been proved (see [Kayal, Saha, and Saptharishi, 2013] and [Fournier et al., 2013]). In particular, using combinatorial design [Kayal et al., 2013] construct an explicit polynomial in VNP that requires depth-4 circuits of size 2^{Omega(n^{1/2}.log(n))} and [Fournier et al., 2013] show that the iterated matrix multiplication polynomial (which is in VP) also requires 2^{Omega(n^{1/2}.log(n))} size depth-4 circuits. In this paper, we identify a simple combinatorial property such that any polynomial f that satisfies this property would achieve a similar depth-4 circuit size lower bound. In particular, it does not matter whether f is in VP or in VNP. As a result, we get a simple unified lower bound analysis for the above mentioned polynomials. Another goal of this paper is to compare our current knowledge of the depth-4 circuit size lower bounds and the determinantal complexity lower bounds. Currently the best known determinantal complexity lower bound is Omega(n^2) for Permanent of a nxn matrix (which is a n^2-variate and degree n polynomial) [Cai, Chen, and Li, 2008]. We prove that the determinantal complexity of the iterated matrix multiplication polynomial is Omega(dn) where d is the number of matrices and n is the dimension of the matrices. So for d=n, we get that the iterated matrix multiplication polynomial achieves the current best known lower bounds in both fronts: depth-4 circuit size and determinantal complexity. Our result also settles the determinantal complexity of the iterated matrix multiplication polynomial to Theta(dn). To the best of our knowledge, a Theta(n) bound for the determinantal complexity for the iterated matrix multiplication polynomial was known only for any constant d>1 [Jansen, 2011]

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.