Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Efficient Summing over Sliding Windows

Abstract

This paper considers the problem of maintaining statistic aggregates over the last W elements of a data stream. First, the problem of counting the number of 1\u27s in the last W bits of a binary stream is considered. A lower bound of Omega(1/epsilon + log(W)) memory bits for Wepsilon-additive approximations is derived. This is followed by an algorithm whose memory consumption is O(1/epsilon + log(W)) bits, indicating that the algorithm is optimal and that the bound is tight. Next, the more general problem of maintaining a sum of the last W integers, each in the range of {0, 1, ..., R}, is addressed. The paper shows that approximating the sum within an additive error of RW epsilon can also be done using Theta(1/epsilon + log(W)) bits for epsilon = Omega(1/W). For epsilon = o(1/W), we present a succinct algorithm which uses B(1 + o(1)) bits, where B = Theta(W*log(1/(W*epsilon))) is the derived lower bound. We show that all lower bounds generalize to randomized algorithms as well. All algorithms process new elements and answer queries in O(1) worst-case time

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.