Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Hyperbolic Random Graphs: Separators and Treewidth

Abstract

Hyperbolic random graphs share many common properties with complex real-world networks; e.g., small diameter and average distance, large clustering coefficient, and a power-law degree sequence with adjustable exponent beta. Thus, when analyzing algorithms for large networks, potentially more realistic results can be achieved by assuming the input to be a hyperbolic random graph of size n. The worst-case run-time is then replaced by the expected run-time or by bounds that hold with high probability (whp), i.e., with probability 1-O(1/n). Though many structural properties of hyperbolic random graphs have been studied, almost no algorithmic results are known. Divide-and-conquer is an important algorithmic design principle that works particularly well if the instance admits small separators. We show that hyperbolic random graphs in fact have comparatively small separators. More precisely, we show that they can be expected to have balanced separator hierarchies with separators of size O(n^{3/2-beta/2}), O(log n), and O(1) if 2 < beta < 3, beta = 3, and 3 < beta, respectively. We infer that these graphs have whp a treewidth of O(n^{3/2-beta/2}), O(log^2 n), and O(log n), respectively. For 2 < beta < 3, this matches a known lower bound. To demonstrate the usefulness of our results, we give several algorithmic applications

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.