Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings

Abstract

We give the first polynomial upper bound on the mixing time of the edge-flip Markov chain for unbiased dyadic tilings, resolving an open problem originally posed by Janson, Randall, and Spencer in 2002. A dyadic tiling of size n is a tiling of the unit square by n non-overlapping dyadic rectangles, each of area 1/n, where a dyadic rectangle is any rectangle that can be written in the form [a2^{-s}, (a+1)2^{-s}] x [b2^{-t}, (b+1)2^{-t}] for a,b,s,t nonnegative integers. The edge-flip Markov chain selects a random edge of the tiling and replaces it with its perpendicular bisector if doing so yields a valid dyadic tiling. Specifically, we show that the relaxation time of the edge-flip Markov chain for dyadic tilings is at most O(n^{4.09}), which implies that the mixing time is at most O(n^{5.09}). We complement this by showing that the relaxation time is at least Omega(n^{1.38}), improving upon the previously best lower bound of Omega(n*log n) coming from the diameter of the chain

Similar works

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.