Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Analisys of frequency-correlation properties of multipath channel for encyprion key generation using samples of differential phase

Abstract

© 2018 IEEE. Wireless Key Generation exploits randomness of fast fading of a multipath radio channel to create identical copies of a shared encryption key at two communication nodes. A promising way for creating a highly secure key is use of samples of differential phase, which allows to overcome short-term instability of frequency standards and to make key generation devices smaller. This study examines frequency-correlation properties of the multipath channel to justify a feasibility of encryption keys generation with the differential phase method. By computer simulation, frequency autocorrelation functions of the envelope and carrier phase of a multipath radio signal are obtained, and estimates of the channel coherence bandwidth are made for a typical urban propagation environment. For random variations of the differential phase of a two-sine probe signal, a probability distribution is analyzed, its uniformity tests are done, and estimates of Shannon entropy at various frequency separations of the two probing tones are made. An effect of the line-of-sight wave and the number of multipaths on the channel frequency-correlation function and on probabilistic properties of the differential phase is considered

Similar works

This paper was published in Kazan Federal University Digital Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.