Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Localizing merging black holes with sub-arcsecond precision using gravitational-wave lensing

Abstract

The current gravitational-wave (GW) localization methods rely mainly on sources with electromagnetic counterparts. Unfortunately, a binary black hole does not emit light. Due to this, it is generally not possible to localize these objects precisely. However, strongly lensed gravitational waves, which are forecasted in this decade, could allow us to localize the binary by locating its lensed host galaxy. Identifying the correct host galaxy is challenging because there are hundreds to thousands of other lensed galaxies within the sky area spanned by the GW observation. However, we can constrain the lensing galaxy’s physical properties through both GW and electromagnetic observations. We show that these simultaneous constraints allow one to localize quadruply lensed waves to one or at most a few galaxies with the LIGO/Virgo/Kagra network in typical scenarios. Once we identify the host, we can localize the binary to two sub-arcsec regions within the host galaxy. Moreover, we demonstrate how to use the system to measure the Hubble constant as a proof-of-principle application

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 20/08/2022

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.