Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Simultaneous single-step one-shot optimization with unsteady PDEs

Abstract

The single-step one-shot method has proven to be very efficient for PDE-constrained optimization where the partial differential equation (PDE) is solved by an iterative fixed point solver. In this approach, the simulation and optimization tasks are performed simultaneously in a single iteration. If the PDE is unsteady, finding an appropriate fixed point iteration is non-trivial. In this paper, we provide a framework that makes the single-step one-shot method applicable for unsteady PDEs that are solved by classical time-marching schemes. The one-shot method is applied to an optimal control problem with unsteady incompressible Navier-Stokes equations that are solved by an industry standard simulation code. With the Van-der-Pol oscillator as a generic model problem, the modified simulation scheme is further improved using adaptive time scales. Finally, numerical results for the advection-diffusion equation are presented. Keywords: Simultaneous optimization; One-shot method; PDE-constrained optimization; Unsteady PDE; Adaptive time scal

Similar works

This paper was published in DSpace@MIT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.