Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A continuous analogue of the tensor-train decomposition

Abstract

We develop new approximation algorithms and data structures for representing and computing with multivariate functions using the functional tensor-train (FT), a continuous extension of the tensor-train (TT) decomposition. The FT represents functions using a tensor-train ansatz by replacing the three-dimensional TT cores with univariate matrix-valued functions. The main contribution of this paper is a framework to compute the FT that employs adaptive approximations of univariate fibers, and that is not tied to any tensorized discretization. The algorithm can be coupled with any univariate linear or nonlinear approximation procedure. We demonstrate that this approach can generate multivariate function approximations that are several orders of magnitude more accurate, for the same cost, than those based on the conventional approach of compressing the coefficient tensor of a tensor-product basis. Our approach is in the spirit of other continuous computation packages such as Chebfun, and yields an algorithm which requires the computation of “continuous” matrix factorizations such as the LU and QR decompositions of vector-valued functions. To support these developments, we describe continuous versions of an approximate maximum-volume cross approximation algorithm and of a rounding algorithm that re-approximates an FT by one of lower ranks. We demonstrate that our technique improves accuracy and robustness, compared to TT and quantics-TT approaches with fixed parameterizations, of high-dimensional integration, differentiation, and approximation of functions with local features such as discontinuities and other nonlinearities. ©2018National Science Foundation (Grant IIS-1452019)US Department of Energy, Office of Advanced Scientific Computing Research (Award no. DE-SC0007099

Similar works

Full text

thumbnail-image

DSpace@MIT

redirect
Last time updated on 29/04/2020

This paper was published in DSpace@MIT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.