Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

An Energy-Efficient Reconfigurable DTLS Cryptographic Engine for Securing Internet-of-Things Applications

Abstract

This paper presents the first hardware implementation of the datagram transport layer security (DTLS) protocol to enable end-to-end security for the Internet of Things (IoT). A key component of this design is a reconfigurable prime field elliptic curve cryptography (ECC) accelerator that is 238× and 9× more energy-efficient compared to software and state-of-the-art hardware, respectively. Our full hardware implementation of the DTLS 1.3 protocol provides 438× improvement in energy-efficiency over software, along with code size and data memory usage as low as 8 and 3 KB, respectively. The cryptographic accelerators are coupled with an on-chip low-power RISC-V processor to benchmark applications beyond DTLS with up to two orders of magnitude energy savings. The test chip, fabricated in 65-nm CMOS, demonstrates hardware-accelerated DTLS sessions while consuming 44.08 μJ/handshake and 0.89 nJ/byte of the encrypted data at 16 MHz and 0.8 V

Similar works

Full text

thumbnail-image

DSpace@MIT

redirect
Last time updated on 19/10/2021

This paper was published in DSpace@MIT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.