Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Parallel graph algorithms in constant adaptive rounds: theory meets practice

Abstract

We study fundamental graph problems such as graph connectivity, minimum spanning forest (MSF), and approximate maximum (weight) matching in a distributed setting. In particular, we focus on the Adaptive Massively Parallel Computation (AMPC) model, which is a theoretical model that captures MapReduce-like computation augmented with a distributed hash table. We show the first AMPC algorithms for all of the studied problems that run in a constant number of rounds and use only O(nϵ) space per machine, where 0 < ϵ < 1. Our results improve both upon the previous results in the AMPC model, as well as the best-known results in the MPC model, which is the theoretical model underpinning many popular distributed computation frameworks, such as MapReduce, Hadoop, Beam, Pregel and Giraph. Finally, we provide an empirical comparison of the algorithms in the MPC and AMPC models in a fault-tolerant distributed computation environment. We empirically evaluate our algorithms on a set of large real-world graphs and show that our AMPC algorithms can achieve improvements in both running time and round-complexity over optimized MPC baselines

Similar works

Full text

thumbnail-image

DSpace@MIT

redirect
Last time updated on 19/12/2021

This paper was published in DSpace@MIT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.