Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

Spin squeezing can improve atomic precision measurements beyond the standard quantum limit (SQL), and unitary spin squeezing is essential for improving atomic clocks. We report substantial and nearly unitary spin squeezing in ^{171}Yb, an optical lattice clock atom. The collective nuclear spin of ∼10^{3} atoms is squeezed by cavity feedback, using light detuned from the system’s resonances to attain unitarity. The observed precision gain over the SQL is limited by state readout to 6.5(4) dB, while the generated states offer a gain of 12.9(6) dB, limited by the curvature of the Bloch sphere. Using a squeezed state within 30% of unitarity, we demonstrate an interferometer that improves the averaging time over the SQL by a factor of 3.7(2). In the future, the squeezing can be simply transferred onto the optical-clock transition of ^{171}Yb

Similar works

Full text

thumbnail-image

DSpace@MIT

redirect
Last time updated on 19/12/2021

This paper was published in DSpace@MIT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.