Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

RF-compass: Robot object manipulation using RFIDs

Abstract

Modern robots have to interact with their environment, search for objects, and move them around. Yet, for a robot to pick up an object, it needs to identify the object's orientation and locate it to within centimeter-scale accuracy. Existing systems that provide such information are either very expensive (e.g., the VICON motion capture system valued at hundreds of thousands of dollars) and/or suffer from occlusion and narrow field of view (e.g., computer vision approaches). This paper presents RF-Compass, an RFID-based system for robot navigation and object manipulation. RFIDs are low-cost and work in non-line-of-sight scenarios, allowing them to address the limitations of existing solutions. Given an RFID-tagged object, RF-Compass accurately navigates a robot equipped with RFIDs toward the object. Further, it locates the center of the object to within a few centimeters and identifies its orientation so that the robot may pick it up. RF-Compass's key innovation is an iterative algorithm formulated as a convex optimization problem. The algorithm uses the RFID signals to partition the space and keeps refining the partitions based on the robot's consecutive moves.We have implemented RF-Compass using USRP software radios and evaluated it with commercial RFIDs and a KUKA youBot robot. For the task of furniture assembly, RF-Compass can locate furniture parts to a median of 1.28 cm, and identify their orientation to a median of 3.3 degrees.National Science Foundation (U.S.

Similar works

This paper was published in DSpace@MIT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.