Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

Abstract

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-complete graphs, and show that any such graph gives rise to a method for proving stability of the switched system. This enables us to derive several asymptotically tight hierarchies of semidefinite programming relaxations that unify and generalize many existing techniques such as common quadratic, common sum of squares, path-dependent quadratic, and maximum/minimum-of-quadratics Lyapunov functions. We compare the quality of approximation obtained by certain classes of path-complete graphs including a family of dual graphs and all path-complete graphs with two nodes on an alphabet of two matrices. We derive approximation guarantees for several families of path-complete graphs, such as the De Bruijn graphs. This provides worst-case performance bounds for path-dependent quadratic Lyapunov functions and a constructive converse Lyapunov theorem for maximum/minimum-of-quadratics Lyapunov functions.National Science Foundation (U.S.) (Grant DMS-0757207)United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Subaward 07688-1)National Science Foundation (U.S.) (Grant CPS-1135843

Similar works

Full text

thumbnail-image

DSpace@MIT

redirect
Last time updated on 26/02/2017

This paper was published in DSpace@MIT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.