Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Brown-Resnick Processes: Analysis, Inference and Generalizations

Abstract

This thesis deals with the analysis, inference and further generalizations of a rich and flexible class of max-stable random fields, the so-called Brown-Resnick processes. The first chapter gives the explicit distribution of the shape functions in the mixed moving maxima representation of the original Brown-Resnick process based on Brownian motions. The result is particularly useful for a fast simulation method. In chapter 2, a multivariate peaks-over-threshold approach for parameter estimation of Hüsler-Reiss distributions, a popular model in multivariate extreme value theory, is presented. As Hüsler-Reiss distributions constitute the finite dimensional margins of Brown-Resnick processes based on Gaussian random fields, the estimators directly enable statistical inference for this class of max-stable processes. As an application, a non-isotropic Brown-Resnick process is fitted to the extremes of 12-year data of daily wind speed measurements. Chapter 3 is concerned with the definition of Brown-Resnick processes based on Lévy processes on the whole real line. Amongst others, it is shown that these Lévy-Brown-Resnick processes naturally arise as limits of maxima of stationary stable Ornstein-Uhlenbeck processes. The last chapter is devoted to the study of maxima of d-variate Gaussian triangular arrays, where in each row the random vectors are assumed to be independent, but not necessarily identically distributed. The row-wise maxima converge to a new class of multivariate max-stable distributions, which can be seen as max-mixtures of Hüsler-Reiss distributions

Similar works

This paper was published in Georg-August-University Göttingen.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.